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Notation

p(θ|D,M) =
p(θ|M)p(D|θ,M)

p(D|M)

=
π(θ)L(θ)

Z
=

q(θ)
Z

• M = model specification

• D specifies observed data

• θ = model parameters

• π(θ) = prior pdf for θ

• L(θ) = likelihood for θ (likelihood function)

• q(θ) = π(θ)L(θ) = “quasiposterior”

• Z = p(D|M) = (marginal) likelihood for the model
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Marginal likelihood:

Z =
∫

dθ π(θ)L(θ) =
∫

dθ q(θ)

Use “Skilling conditional” for common conditioning info:

p(θ|D) =
p(θ)p(D|θ)

p(D)
|| M

Suppress such conditions when clear from context
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Recap of Key Bayesian Ideas
Probability as generalized logic

Probability quantifies the strength of arguments

To appraise hypotheses, calculate probabilities for arguments
from data and modeling assumptions to each hypothesis

Use all of probability theory for this

Bayes’s theorem
p(Hypothesis | Data) ∝

p(Hypothesis) × p(Data | Hypothesis) || Context

Data change the support for a hypothesis ∝ ability of
hypothesis to predict the data

Law of total probability
p(Hypotheses | Data) =

∑

p(Hypothesis | Data) || Context

The support for a compound/composite hypothesis must
account for all the ways it could be true
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Theme: Parameter Space Volume
Bayesian calculations sum/integrate over parameter/hypothesis
space!

(Frequentist calculations average over sample space & typically optimize

over parameter space.)

• Credible regions integrate over parameter space

• Marginalization weights the profile likelihood by a volume
factor for the nuisance parameters

• Prediction averages parameter-dependent predictive
distributions over parameter uncertainties

• Model likelihoods have “Ockham factors” resulting from
parameter space volume factors

Many virtues of Bayesian methods can be attributed to this
accounting for the “size” of parameter space. This idea does not
arise naturally in frequentist statistics (can be added “by hand”). 7 / 56
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Frequentist Computation
Sample space integrals

Integrate the sampling distribution over Dhyp to quantify
variability of a procedure. Examples:

Bias of an estimator, θ̂(Dhyp):

b(θ) =
∫

dDhyp p(Dhyp|θ) [θ̂(Dhyp) − θ]

If b(θ) = b, we can easily make an unbiased estimator.

Coverage of an interval, ∆(Dhyp):

C (θ) =
∫

dDhyp p(Dhyp|θ) Jθ ∈ ∆(Dhyp)K
Indicator

If C (θ) = C , the interval is a strict confidence interval with
confidence level CL = C . Otherwise, it is a conservative
confidence interval with confidence level CL = minθ C (θ)

A major theoretical focus is finding good procedures with
properties independent of the (unknown!) parameters
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“Plug-in” approximation
Report properties of procedure for θ = θ̂

Can be asymptotically accurate: for large N, expect θ̂ → θ
(under regularity conditions)

Inference with independent data
Consider N samples, Dhyp = {xi}; and model M with m
parameters

Suppose p(Dhyp|θ) = p(x1|θ) p(x2|θ) · · · p(xN |θ)
Analytically: If the statistics depend on sums of the data,
characteristic functions (Fourier transforms) are helpful; can
evaluate N-D integral with 1-D integrals

Numerically: Independence makes computations easy in the
plug-in approximation, using Monte Carlo simulation of data
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Confidence Interval for a Normal Mean
Suppose we have a sample of N = 5 values xi ,

xi ∼ N(µ, 1)

We want to estimate µ, including some quantification of
uncertainty in the estimate: an interval with a probability attached

Frequentist approaches: method of moments, BLUE,
least-squares/χ2, maximum likelihood

Focus on likelihood (equivalent to χ2 here); this is closest to Bayes:

L(µ) = p({xi}|µ)

=
∏

i

1
σ
√

2π
e−(xi−µ)2/2σ2

; σ = 1

∝ e−χ2(µ)/2

Estimate µ from maximum likelihood (minimum χ2)
Define an interval and its coverage frequency from the L(µ) curve
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Construct an Interval Procedure for Known µ

Likelihoods for 3 simulated data sets, µ = 0
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Likelihoods for 100 simulated data sets, µ = 0
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Explore Dependence on µ

Likelihoods for 100 simulated data sets, µ = 3
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Luckily the ∆ logL distribution is the same!
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Apply to Observed Sample
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Report the green region, with coverage as calculated for ensemble of hypothetical data
(red region, previous slide).
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Bayesian Computation

Parameter space integrals
For model with m parameters, we need to evaluate integrals
like:

∫

dmθ g(θ)π(θ)L(θ) =
∫

dmθ g(θ) q(θ) π(θ)L(θ)

• g(θ) = 1 → p(D|M) (norm. const., model likelihood)

• g(θ) = θ → posterior mean for θ

• g(θ) = ‘box’ → probability θ ∈ credible region

• g(θ) = 1, integrate over subspace → marginal posterior

• g(θ) = δ[ψ − ψ(θ)] → propagate uncertainty to ψ(θ)
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Credible Region for a Normal Mean
Normalize the likelihood for the observed sample; report the region that includes
68.3% of the normalized likelihood.

-3 -2 -1 0 1 2 3
1x

-3

-2

-1

0

1

2

3

2
x

Sample Space

-3 -2 -1 0 1 2 3
µ

-10

-8

-6

-4

-2

0

2/2
χ

−
=)

L(
g
ol

Parameter Space

-3 -2 -1 0 1 2 3
µ

0.0

0.2

0.4

0.6

0.8

1.0

)
µ(

L
dezila

mr
o
N

17 / 56



When they’ll differ
Both approaches report µ ∈ [x̄ − σ/

√
N, x̄ + σ/

√
N], and assign

68.3% to this interval (with different meanings).

This matching is a coincidence!

When might results differ? (F = frequentist, B = Bayes)

• If F procedure doesn’t use likelihood directly
• If F procedure properties depend on params (nonlinear models,

pivotal quantities)
• If F properties depend on likelihood shape (conditional inference,

ancillary statistics, recognizable subsets)
• If there are extra uninteresting parameters (nuisance parameters,

corrected profile likelihood, conditional inference)
• If B uses important prior information

Also, for a different task—comparison of parametric models—the
approaches are qualitatively different (significance tests & info
criteria vs. Bayes factors)
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The Bayesian computation challenge
Asymptotic approximations

• Most probability is usually in regions near the mode
• Taylor expansion of log p → leading order is quadratic
• Integrand may be well-approximated by a multivariate

(correlated) normal: the Laplace approximation

Requires ingredients familiar from frequentist calculations

Bayesian calculation is not significantly harder than
frequentist calculation in this limit.

Inference with independent data
Analytical: For exponential family models & conjugate priors,
integrals are often tractable and simpler than frequentist
counterparts (e.g., normal credible regions, Student’s t)

Numerical: For “large” m (> 4 is often enough!) the
integrals are often very challenging because of structure (e.g.,
correlations) in parameter space. Calculations are pursued
without making any modeling approximations.
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Inference with conditionally independent parameters
In multilevel (hierarchical) models—e.g., for “measurement
error” and latent variable problems—a layer of variables may
be independent given higher level variables → numerically
tractable marginals

DND1 D2

θ

x1 x2 xN

L(θ, {xi}) ≡ p({Di}|θ, {xi})

=
∏

i

p(Di |xi )f (xi |θ) =
∏

i

ℓi(xi )f (xi |θ)

so Lm(θ) =
∏

i

∫

dxi ℓi(xi )f (xi |θ)
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Bayesian Computation Menu
Large sample size, N: Laplace approximation

• Approximate posterior as multivariate normal → det(covar) factors
• Uses ingredients available in χ2/ML fitting software (MLE, Hessian)
• Often accurate to O(1/N) (better than O(1/

√
N))

Modest-dimensional models (m<∼10 to 20)
• Adaptive cubature
• Monte Carlo integration (importance & stratified sampling, adaptive

importance sampling, quasirandom MC)

High-dimensional models (m>∼5)
• Posterior sampling — create RNG that samples posterior
• Markov Chain Monte Carlo (MCMC) is the most general framework
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Laplace Approximations

Suppose posterior has a single dominant (interior) mode at θ̂. For
large N,

π(θ)L(θ) ≈ π(θ̂)L(θ̂) exp
[

−1
2

(θ − θ̂)Î (θ − θ̂)
]

where Î = −∂
2 ln[π(θ)L(θ)]

∂2θ

∣

∣

∣

∣

∣

θ̂
= Negative Hessian of ln[π(θ)L(θ)]
= “Observed Fisher info. matrix” (for flat prior)
≈ Inverse of covariance matrix

E.g., for 1-d Gaussian posterior, Î = 1/σ2
θ
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Marginal likelihoods
∫

dθ π(θ)L(θ) ≈ π(θ̂)L(θ̂) (2π)m/2∣
∣Î
∣

∣

−1/2

Marginal posterior densities
Profile likelihood Lp(φ) ≡ maxη L(φ, η) = L(φ, η̂(φ))

→ p(φ|D,M) ∝∼ π(φ, η̂(φ))Lp(φ)
∣

∣I η(φ)
∣

∣

−1/2

with I η(φ) = ∂η∂η ln(πL)|η̂

Posterior expectations
∫

dθ f (θ)π(θ)L(θ) ∝∼ f (θ̃)π(θ̃)L(θ̃) (2π)m/2∣
∣Ĩ
∣

∣

−1/2

where θ̃ maximizes f πL

Tierney & Kadane, “Accurate Approximations for Posterior Moments and Marginal

Densities,” JASA (1986)
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Features
Uses output of common algorithms for frequentist methods
(optimization, Hessian∗)

Uses ratios → approximation is often O(1/N) or better

Includes volume factors that are missing from common
frequentist methods (better inferences!)

∗Some optimizers provide approximate Hessians, e.g., Levenberg-Marquardt for
modeling data with additive Gaussian noise. For more general cases, see Kass (1987)
“Computing observed information by finite differences” (beware typos): central 2nd
differencing + Richardson extrapolation.
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Drawbacks
Posterior must be smooth and unimodal (or well-separated
modes)

Mode must be away from boundaries (can be relaxed)

Result is parameterization-dependent—try to reparameterize
to make things look as Gaussian as possible (e.g., θ → log θ
to straighten banana-shaped contours)

Asymptotic approximation with no simple diagnostics (like
many frequentist methods)

Empirically, it often does not work well for m>∼10
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Relationship to BIC
Laplace approximation for marginal likelihood:

Z ≡
∫

dθ π(θ)L(θ) ≈ π(θ̂)L(θ̂) (2π)m/2∣
∣Î
∣

∣

−1/2

∼ π(θ̂)L(θ̂) (2π)m/2
m
∏

k=1

σθk

We expect asymptotically σθk ∝ 1/
√
N

Bayesian Information Criterion (BIC; aka Schwarz criterion):

−1
2

BIC = lnL(θ̂) − m

2
lnN

This is a very crude approximation to lnZ ; it captures the
asymptotic N dependence, but omits factors O(1). Can
justify in some i.i.d. settings using “unit info prior.”
BIC ∼ Bayesian counterpart to adjusting χ2 for d.o.f., but partly accounts for
parameter space volume (→ consistent model choice, unlike fixed-α hyp. tests)

Can be useful for identifying cases where an an accurate but hard Z calculation
is useful (esp. for nested models, where some missing factors cancel)
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Modest-D: Quadrature & Cubature
Quadrature rules for 1-D integrals (with weight function h(θ)):

∫

dθ f (θ) =
∫

dθ h(θ)
f (θ)
h(θ)

≈
∑

i

wi f (θi) + O(n−2) or O(n−4)

Smoothness → fast convergence in 1-D

Curse of dimensionality: Cartesian product rules converge slowly,
O(n−2/m) or O(n−4/m) in m-D

Wikipedia
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Monomial Cubature Rules
Seek rules exact for multinomials (× weight) up to fixed monomial
degree with desired lattice symmetry; e.g.:

f (x , y , z) = MVN(x , y , z)
∑

ijk

aijkx
iy jzk for i + j + k ≤ 7

Number of points required grows much more slowly with m than
for Cartesian rules (but still quickly)

A 7th order rule in 2-d
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Adaptive Cubature
• Subregion adaptive cubature: Use a pair of monomial rules

(for error estim’n); recursively subdivide regions w/ large error
(ADAPT, CUHRE, BAYESPACK, CUBA). Concentrates points
where most of the probability lies.

• Adaptive grid adjustment: Naylor-Smith method
Iteratively update abscissas and weights to make the
(unimodal) posterior approach the weight function.

These provide diagnostics (error estimates or measures of
reparameterization quality).

# nodes used by ADAPT’s 7th order rule
2d + 2d2 + 2d + 1

Dimen 2 3 4 5 6 7 8 9 10
# nodes 17 33 57 93 149 241 401 693 1245
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Analysis of Galaxy Polarizations

TJL, Flanagan, Wasserman (1997)
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Monte Carlo Integration

∫

g × p is just the expectation of g ; suggests approximating with a
sample average:
∫

dθ g(θ)p(θ) ≈ 1
n

∑

θi∼p(θ)

g(θi ) + O(n−1/2)
[

∼ O(n−1) with
quasi-MC

]

This is like a cubature rule, with equal weights and random nodes

Ignores smoothness → poor performance in 1-D, 2-D

Avoids curse: O(n−1/2) regardless of dimension
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Why/when it works

• Independent sampling & law of large numbers →
asymptotic convergence in probability

• Error term is from CLT; requires finite variance

Practical problems

• p(θ) must be a density we can draw IID samples
from—perhaps the prior, but. . .

• O(n−1/2) multiplier (std. dev’n of g) may be large

→ IID∗ Monte Carlo can be hard if dimension >∼ 5–10

∗IID = independently, identically distributed
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Posterior sampling

∫

dθ g(θ)p(θ|D) ≈ 1
n

∑

θi∼p(θ|D)

g(θi ) + O(n−1/2)

When p(θ) is a posterior distribution, drawing samples from it is
called posterior sampling:

• One set of samples can be used for many different calculations
(so long as they don’t depend on low-probability events)

• This is the most promising and general approach for Bayesian
computation in high dimensions—though with a twist
(MCMC!)

Challenge: How to build a RNG that samples from a posterior?
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Accept-Reject Algorithm
Goal: Given q(θ) ≡ π(θ)L(θ), build a RNG that draws samples
from the probability density function (pdf)

f (θ) =
q(θ)
Z

with Z =
∫

dθ q(θ)

The probability for a region under the pdf is the area (volume)
under the curve (surface).

→ Sample points uniformly in volume under q; their θ values will
be draws from f (θ).
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How can we generate points uniformly under the pdf?

Suppose q(θ) has compact support: it is nonzero over a finite
contiguous region of θ-space of length/area/volume V .

Generate candidate points uniformly in a rectangle enclosing q(θ).

Keep the points that end up under q.
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Basic accept-reject algorithm

1. Find an upper bound Q for q(θ)
2. Draw a candidate parameter value θ′ from the uniform

distribution in V
3. Draw a uniform random number, u
4. If the ordinate uQ < q(θ′), record θ′ as a sample
5. Goto 2, repeating as necessary to get the desired number

of samples.

Efficiency = ratio of areas (volumes), Z/(QV ).

Two issues

• Increasing efficiency

• Handling distributions with infinite support
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Envelope Functions
Suppose there is a pdf h(θ) that we know how to sample from and
that roughly resembles q(θ):

• Multiply h by a constant C so Ch(θ) ≥ q(θ)

• Points with coordinates θ′ ∼ h and ordinate uCh(θ′) will be
distributed uniformly under Ch(θ)

• Replace the hyperrectangle in the basic algorithm with the
region under Ch(θ)
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Accept-Reject Algorithm

1 Choose a tractable density h(θ) and a constant C so Ch
bounds q

2 Draw a candidate parameter value θ′ ∼ h

3 Draw a uniform random number, u
4 If q(θ′) < Ch(θ′), record θ′ as a sample
5 Goto 2, repeating as necessary to get the desired number of

samples.

Efficiency = ratio of volumes, Z/C .

In problems of realistic complexity, the efficiency is intolerably low
for parameter spaces of more than several dimensions.

Take-away idea: Propose candidates that may be accepted or
rejected
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Markov Chain Monte Carlo

Accept/Reject aims to produce independent samples—each new θ
is chosen irrespective of previous draws.

To enable exploration of complex pdfs, let’s introduce dependence:
Choose new θ points in a way that

• Tends to move toward regions with higher probability than
current

• Tends to avoid lower probability regions

The simplest possibility is a Markov chain:

p(next location|current and previous locations)
= p(next location|current location)

A Markov chain “has no memory.”
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Markov chain

π(θ)L(θ) contours

θ1

θ2

Initial θ

Covered later!
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Importance sampling
∫

dθ g(θ)q(θ) =
∫

dθ g(θ)
q(θ)
P(θ)

P(θ) ≈ 1
n

∑

θi∼P(θ)

g(θi )
q(θi)
P(θi)

Choose P to make variance small. (Not easy!)

(x)!

x

Q*(x)
P*(x)

P(x)
q(x)

g(x)

Can be used for both model comparison (marginal likelihood calculation),
and parameter estimation.

Adaptive importance sampling: Build the importance sampler on-the-fly
(e.g., VEGAS, miser in Numerical Recipes); annealing adaptive
importance sampling (TJL+ 2012; Liu 2014). . . 44 / 56
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Bootstrapping vs. posterior sampling

“Bootstrapping” is a a framework that aims to improve simple but
approximate frequentist methods:

• Parametric bootstrap: Improve asymptotic behavior of
estimates for a trusted model: reduce bias of estimates,
provide more accurate coverage of confidence regions

• Nonparametric bootstrap: Provide results that are
approximately accurate with weak modeling assumptions

Most common approach uses Monte Carlo to simulate an ensemble
of data sets related to the observed one, and use them to
recalibrate a simple method.

Parametric bootstrap has a step producing an ensemble of
estimates that looks like a set of posterior samples. Can they be
thought of this way?
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Coverage and Confidence Intervals
Setup

A distribution with parameters θ produces data D.
θ∗ = true value of parameters producing many replicate
datasets
Dobs = a single, actually observed dataset

Terminology
“Statistic” ≡ Function of data, f (D) (i.e., θ doesn’t appear)

“Interval” ≡ Interval-valued statistic ∆(D), e.g., for 1-D
parameter,

∆(D) = [l(D), u(D)]

Note “interval” refers both to the statistic (function), and to
a particular interval, e.g., ∆(Dobs).

Examples:

• Interval about the mean: ∆(D) = [x̄ − C , x̄ + C ]

• Order-statistic-based interval: ∆(D) = [x(6), x(11)]
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“Coverage” ≡ Fraction of time interval contains θ:

C (θ) =
∫

dD p(D|θ) Jθ ∈ ∆(D)K

Monte Carlo algorithm using N simulated datasets:

C (θ) ≈ 1
N

∑

D∼p(D|θ)

Jθ ∈ ∆(D)K

1. Fix θ at some value; start a counter n = 0
2. Simulate a dataset from p(D|θ)
3. Calculate ∆(D); increment counter if θ ∈ ∆(D)
4. Goto (2) for N total iterations
5. Report C (θ) = n

N

In general the coverage depends on θ.
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‘Plug-In” Approximation
Problem: We don’t know θ∗ (that’s why we’re doing statistics!).
When we report ∆(Dobs), what coverage should we report?

“Confidence level” CL ≡ maximum coverage over all possible
values of θ, a conservative promise of coverage

For complex models, calculating C (θ) across the whole parameter
space is prohibitive.

“Plug-in” approach
• Devise some estimator (a statistic!) θ̂(D) for the

parameters; e.g., maximum likelihood

• Calculate Ĉ = C (θ̂(Dobs))

• Report ∆(Dobs) with CL ≈ Ĉ

This gives a parametric bootstrap confidence interval; the
term is most common when Monte Carlo simulated datasets
from p(D|θ̂(Dobs)) are used to estimate Ĉ .
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Incorrect Parametric Bootstrapping

A

T

P = (A, T )

✦

P̂(Dobs)

Dots show estimates found by analyzing bootstrapped data sets.

Histograms/contours of best-fit estimates from D ∼ p(D|θ̂(Dobs))
provide poor confidence regions—no better (possibly worse) than
using a least-squares/χ2 covariance matrix.

What’s wrong with the population of θ̂ points for this purpose?
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Incorrect Parametric Bootstrapping

A

T

P = (A, T )

✦

P̂(Dobs)❉

Dots show estimates found by analyzing bootstrapped data sets.

Histograms/contours of best-fit estimates from D ∼ p(D|θ̂(Dobs))
provide poor confidence regions—no better (possibly worse) than
using a least-squares/χ2 covariance matrix.

What’s wrong with the population of θ̂ points for this purpose?

The estimates are skewed down and to the right, indicating the
truth must be up and to the left. 50 / 56



Likelihood-Based Parametric Bootstrapping

Key idea: Use likelihood ratios to define confidence regions.
I.e., use L = lnL or χ2 differences to define regions.

Estimate parameter values via maximum likelihood (minχ2)
→ Lmax.
Pick a constant ∆L. Then define an interval by:

∆(D) = {θ : L(θ) > Lmax − ∆L}
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Coverage calculation:

1. Fix θ0 = θ̂(Dobs) (plug-in approx’n)
2. Simulate a dataset from p(D|θ0) → LD(θ)
3. Find maximum likelihood estimate θ̂(D)
4. Calculate ∆L = LD(θ̂D) − LD(θ0)
5. Goto (2) for N total iterations
6. Histogram the ∆L values to find coverage vs. ∆L

(fraction of sim’ns with smaller ∆L)

Report ∆(Dobs) with ∆L chosen for desired approximate CL.

Note that CL is a property of the function ∆(D), not of the
particular interval, ∆(Dobs).
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∆L Calibration Reported Region

A

T

✦

A

T

✦

The CL is approximate due to:

• Monte Carlo error in calibrating ∆L

• The plug-in approximation
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Credible Region Via Posterior Sampling
Monte Carlo algorithm for finding credible regions:

1. Create a RNG that can sample θ from p(θ|Dobs)
2. Draw N samples; record θi and qi = π(θi )L(µi )
3. Sort the samples by the qi values
4. An HPD region of probability P is the θ region spanned

by the 100P% of samples with highest qi

Note that no dataset other than Dobs is ever considered.
P is a property of the particular interval reported.
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T

✦
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Rescuing the bootstrap parameter estimates

Although the best-fit parameters from bootstrapped data don’t
correspond to posterior samples, they are in the neighborhood of
the posterior → use them to create an importance sampling
distribution:

• Weighted Likelihood Bootstrap: Nonparametric bootstrap +
KDE for modest-dimensional models (Newton & Raftery
1994)

• Efron (2011, 2012): Posterior sampling via parametric
bootstrap and importance sampling adjustments
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