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MCMC: A Science & an Art

A Science:
If your algorithm Is designed properly, the
Markov chain will converge to the target
RAGUNAOdzOAZ2Y X | FGSNJI )
A Art:

When iIs it wise to make inferences based on ¢
finite Markov chain



Assessing Convergence Is Essent

If you want to:
A Base your conclusions on posterior distributions

A Report accurate parameter estimates &
uncertainties

A Avoid fooling yourself

A Avoid devoting resources (e.g., your effort,
telescope time) to followdzL) | ¥ a Ay ¥ S
AayQu adzLJLZ2ZNIUSR o0e RIUG

A Avoid writing an erratum to your paper



Has thig€Chain Converaoed?

0.7 0.6
0.6 1 05
0.5

0.4

3 0.4

o

3 0.3

3

9 03

L

0.2
0.2
01 | o1
0.0 0.0

0 2 4 6 8 10 12 14
X




Has thig€Chain Converged?
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Has thig€Chain Converged?
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Has thig€Chain Converged?
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Has thig€Chain Converged?
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Has thig€Chain Converged?
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Has thigChain Converged?
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Has thig€Chain Converged?
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Has thig€Chain Converged?
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Has thig€Chain Converged?
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Has thisChain Converaed?
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Good Signs

A Any sufficiently large segment of Markov chain
would give similar results

A Desirable acceptance rate of proposed steps

Al KFAY GYAESa ¢Sftfé O A
longer than any observed timescale for
correlation between samples)

A Multiple chains initialized from different initial
conditions give similar results

A MCMC analysis of similar problem using
simulated data give accurate results, even with
significantly fewer iterations
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I At best, you fail to prove a failure to converge

A Convergence rate can be exponentially
sensitive to barriers between local modes.
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What should | do?

A Be paranoid
A Run chains longer than you think you need to
A Compute several Markov chains

I Initialized with significantly different initial states

A Look at your Markov chains yourself
| Trace plots
I Marginal joint densities



What warning signs should
| be looking for?

A Differences within or across Markov chains
Aat 22NJ YAEAY 3¢

A Low/high acceptance rates

A Autocorrelation between states of Markov chai
A Strongly correlated parameters

A Suspicious tails or posterior shapes



Check Autocorrelation of Markov chair

A Autocorrelation as a function of lag
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A What is smallest lag to give ap,f 0?
A One of several methods for estimating how

many iterations of Markov chain are needed
for effectivelyindependentsamples




Checking Autocorrelation Function
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Getting More Quantitative

Calculate convergence diagnostics

A Geweke(1992): Compares means calculated from distinct
segments of Markoehain

A Raftery& Lewis (1992): Estimates th@nimumchain
length needed to estimate a percentile to some precision

A Gelman& Rubin (1992)R  compares variances between
chains
A Brooks& Gelman(1998): Several generalizationsR f
I Account forcovariances
I Can apply to higher moments
I Scale reduction for arbitrary credibletervals



Estimate Potential Scale Reduction Fac
GelmanRubin diagnosticf? )

A Computem independent Markov chains
A Compares variance of each chain to ponled variance
A If initial states (4;) areoverdispersedthenR approaches unity from above
A Provides estimate of how much variance could be reduced by running che
longer
A Itis anestimate!
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Estimate Potential Scale Reduction Fac

Bare Minimum:
A Checkk for each model parameter

A Checkr for any important functions of model
parameters

Better:

A Consider applying a generalization that check:
for covariancesmoments or intervals of interes



Estimate Potential Scale Reduction Fac

Returning to previous example:
A GelmanRubin diagnostick ) is <1.001

A Consider generalized statistic
N length of total-sequence interval
Rinterval = — .
mean length of the within-sequence intervals

for central(1-") credible interval
A Plot as function of




Estimate Potential Scale Reduction Fac
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Estimate Potential Scale Reduction Fac
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Test using Simplified Problems where
You Can Compare to Target Density

This target distribution for the first example was:

Ap(x,y) = p(x) p(y)

A p(x) isLogNormalzero mean, unit scale)
1 ilnz— )=

-l_'],—l—

Ixlz;pn,0) = — € 2 . x>0
Tov 2T

A p(y) islnverseGammdunit shape, unit scale)
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Test using Simplified Problems where
You Can Compare to Target Density




Use Problematic Runs to
Improve Your Algorithm
A Why did our Markov chains struggle on a
relatively simple target distribution?

A How could we change our algorithm to
accelerate convergence?



Has this Chain Converged?
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Has this Chain Converged?
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Has thigChain Converged?



